Paper Reading AI Learner

Inclusion, equality and bias in designing online mass deliberative platforms

2021-07-27 10:13:57
Ruth Shortall, Anatol Itten, Michiel van der Meer, Pradeep K. Murukannaiah, Catholijn M. Jonker

Abstract

Designers of online deliberative platforms aim to counter the degrading quality of online debates and eliminate online discrimination based on class, race or gender. Support technologies such as machine learning and natural language processing open avenues for widening the circle of people involved in deliberation, moving from small groups to ``crowd'' scale. Some design features of large-scale online discussion systems allow larger numbers of people to discuss shared problems, enhance critical thinking, and formulate solutions. However, scaling up deliberation is challenging. We review the transdisciplinary literature on the design of digital mass-deliberation platforms and examine the commonly featured design aspects (e.g., argumentation support, automated facilitation, and gamification). We find that the literature is heavily focused on developing technical fixes for scaling up deliberation, with a heavy western influence on design and test users skew young and highly educated. Contrastingly, there is a distinct lack of discussion on the nature of the design process, the inclusion of stakeholders and issues relating to inclusion, which may unwittingly perpetuate bias. Another tendency of deliberation platforms is to nudge participants to desired forms of argumentation, and simplifying definitions of good and bad arguments to fit algorithmic purposes. Few studies bridge disciplines between deliberative theory, design and engineering. As a result, scaling up deliberation will likely advance in separate systemic siloes. We make design and process recommendations to correct this course and suggest avenues for future research.

Abstract (translated)

URL

https://arxiv.org/abs/2107.12711

PDF

https://arxiv.org/pdf/2107.12711


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot