Paper Reading AI Learner

Parallel Detection for Efficient Video Analytics at the Edge

2021-07-27 02:50:46
Yanzhao Wu, Ling Liu, Ramana Kompella

Abstract

Deep Neural Network (DNN) trained object detectors are widely deployed in many mission-critical systems for real time video analytics at the edge, such as autonomous driving and video surveillance. A common performance requirement in these mission-critical edge services is the near real-time latency of online object detection on edge devices. However, even with well-trained DNN object detectors, the online detection quality at edge may deteriorate for a number of reasons, such as limited capacity to run DNN object detection models on heterogeneous edge devices, and detection quality degradation due to random frame dropping when the detection processing rate is significantly slower than the incoming video frame rate. This paper addresses these problems by exploiting multi-model multi-device detection parallelism for fast object detection in edge systems with heterogeneous edge devices. First, we analyze the performance bottleneck of running a well-trained DNN model at edge for real time online object detection. We use the offline detection as a reference model, and examine the root cause by analyzing the mismatch among the incoming video streaming rate, video processing rate for object detection, and output rate for real time detection visualization of video streaming. Second, we study performance optimizations by exploiting multi-model detection parallelism. We show that the model-parallel detection approach can effectively speed up the FPS detection processing rate, minimizing the FPS disparity with the incoming video frame rate on heterogeneous edge devices. We evaluate the proposed approach using SSD300 and YOLOv3 on benchmark videos of different video stream rates. The results show that exploiting multi-model detection parallelism can speed up the online object detection processing rate and deliver near real-time object detection performance for efficient video analytics at edge.

Abstract (translated)

URL

https://arxiv.org/abs/2107.12563

PDF

https://arxiv.org/pdf/2107.12563.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot