Paper Reading AI Learner

A Novel CropdocNet for Automated Potato Late Blight Disease Detection from the Unmanned Aerial Vehicle-based Hyperspectral Imagery

2021-07-28 11:18:48
Yue Shi, Liangxiu Han, Anthony Kleerekoper, Sheng Chang, Tongle Hu

Abstract

Late blight disease is one of the most destructive diseases in potato crop, leading to serious yield losses globally. Accurate diagnosis of the disease at early stage is critical for precision disease control and management. Current farm practices in crop disease diagnosis are based on manual visual inspection, which is costly, time consuming, subject to individual bias. Recent advances in imaging sensors (e.g. RGB, multiple spectral and hyperspectral cameras), remote sensing and machine learning offer the opportunity to address this challenge. Particularly, hyperspectral imagery (HSI) combining with machine learning/deep learning approaches is preferable for accurately identifying specific plant diseases because the HSI consists of a wide range of high-quality reflectance information beyond human vision, capable of capturing both spectral-spatial information. The proposed method considers the potential disease specific reflectance radiation variance caused by the canopy structural diversity, introduces the multiple capsule layers to model the hierarchical structure of the spectral-spatial disease attributes with the encapsulated features to represent the various classes and the rotation invariance of the disease attributes in the feature space. We have evaluated the proposed method with the real UAV-based HSI data under the controlled field conditions. The effectiveness of the hierarchical features has been quantitatively assessed and compared with the existing representative machine learning/deep learning methods. The experiment results show that the proposed model significantly improves the accuracy performance when considering hierarchical-structure of spectral-spatial features, comparing to the existing methods only using spectral, or spatial or spectral-spatial features without consider hierarchical-structure of spectral-spatial features.

Abstract (translated)

URL

https://arxiv.org/abs/2107.13277

PDF

https://arxiv.org/pdf/2107.13277.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot