Paper Reading AI Learner

Interactive dimensionality reduction using similarity projections

2018-11-13 21:21:15
Dimitris Spathis, Nikolaos Passalis, Anastasios Tefas

Abstract

Recent advances in machine learning allow us to analyze and describe the content of high-dimensional data like text, audio, images or other signals. In order to visualize that data in 2D or 3D, usually Dimensionality Reduction (DR) techniques are employed. Most of these techniques, e.g., PCA or t-SNE, produce static projections without taking into account corrections from humans or other data exploration scenarios. In this work, we propose the interactive Similarity Projection (iSP), a novel interactive DR framework based on similarity embeddings, where we form a differentiable objective based on the user interactions and perform learning using gradient descent, with an end-to-end trainable architecture. Two interaction scenarios are evaluated. First, a common methodology in multidimensional projection is to project a subset of data, arrange them in classes or clusters, and project the rest unseen dataset based on that manipulation, in a kind of semi-supervised interpolation. We report results that outperform competitive baselines in a wide range of metrics and datasets. Second, we explore the scenario of manipulating some classes, while enriching the optimization with high-dimensional neighbor information. Apart from improving classification precision and clustering on images and text documents, the new emerging structure of the projection unveils semantic manifolds. For example, on the Head Pose dataset, by just dragging the faces looking far left to the left and those looking far right to the right, all faces are re-arranged on a continuum even on the vertical axis (face up and down). This end-to-end framework can be used for fast, visual semi-supervised learning, manifold exploration, interactive domain adaptation of neural embeddings and transfer learning.

Abstract (translated)

URL

https://arxiv.org/abs/1811.05531

PDF

https://arxiv.org/pdf/1811.05531.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot