Paper Reading AI Learner

Fourier Series Expansion Based Filter Parametrization for Equivariant Convolutions

2021-07-30 10:01:52
Qi Xie, Qian Zhao, Zongben Xu, Deyu Meng

Abstract

It has been shown that equivariant convolution is very helpful for many types of computer vision tasks. Recently, the 2D filter parametrization technique plays an important role when designing equivariant convolutions. However, the current filter parametrization method still has its evident drawbacks, where the most critical one lies in the accuracy problem of filter representation. Against this issue, in this paper we modify the classical Fourier series expansion for 2D filters, and propose a new set of atomic basis functions for filter parametrization. The proposed filter parametrization method not only finely represents 2D filters with zero error when the filter is not rotated, but also substantially alleviates the fence-effect-caused quality degradation when the filter is rotated. Accordingly, we construct a new equivariant convolution method based on the proposed filter parametrization method, named F-Conv. We prove that the equivariance of the proposed F-Conv is exact in the continuous domain, which becomes approximate only after discretization. Extensive experiments show the superiority of the proposed method. Particularly, we adopt rotation equivariant convolution methods to image super-resolution task, and F-Conv evidently outperforms previous filter parametrization based method in this task, reflecting its intrinsic capability of faithfully preserving rotation symmetries in local image features.

Abstract (translated)

URL

https://arxiv.org/abs/2107.14519

PDF

https://arxiv.org/pdf/2107.14519.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot