Paper Reading AI Learner

Subjective Image Quality Assessment with Boosted Triplet Comparisons

2021-07-31 10:03:32
Hui Men, Hanhe Lin, Mohsen Jenadeleh, Dietmar Saupe

Abstract

In subjective full-reference image quality assessment, differences between perceptual image qualities of the reference image and its distorted versions are evaluated, often using degradation category ratings (DCR). However, the DCR has been criticized since differences between rating categories on this ordinal scale might not be perceptually equidistant, and observers may have different understandings of the categories. Pair comparisons (PC) of distorted images, followed by Thurstonian reconstruction of scale values, overcome these problems. In addition, PC is more sensitive than DCR, and it can provide scale values in fractional, just noticeable difference (JND) units that express a precise perceptional interpretation. Still, the comparison of images of nearly the same quality can be difficult. We introduce boosting techniques embedded in more general triplet comparisons (TC) that increase the sensitivity even more. Boosting amplifies the artefacts of distorted images, enlarges their visual representation by zooming, increases the visibility of the distortions by a flickering effect, or combines some of the above. Experimental results show the effectiveness of boosted TC for seven types of distortion. We crowdsourced over 1.7 million responses to triplet questions. A detailed analysis shows that boosting increases the discriminatory power and allows to reduce the number of subjective ratings without sacrificing the accuracy of the resulting relative image quality values. Our technique paves the way to fine-grained image quality datasets, allowing for more distortion levels, yet with high-quality subjective annotations. We also provide the details for Thurstonian scale reconstruction from TC and our annotated dataset, KonFiG-IQA, containing 10 source images, processed using 7 distortion types at 12 or even 30 levels, uniformly spaced over a span of 3 JND units.

Abstract (translated)

URL

https://arxiv.org/abs/2108.00201

PDF

https://arxiv.org/pdf/2108.00201.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot