Paper Reading AI Learner

Towards explainable artificial intelligence for early anticipation of traffic accidents

2021-07-31 15:53:32
Muhammad Monjurul Karim, Yu Li, Ruwen Qin

Abstract

Traffic accident anticipation is a vital function of Automated Driving Systems (ADSs) for providing a safety-guaranteed driving experience. An accident anticipation model aims to predict accidents promptly and accurately before they occur. Existing Artificial Intelligence (AI) models of accident anticipation lack a human-interpretable explanation of their decision-making. Although these models perform well, they remain a black-box to the ADS users, thus difficult to get their trust. To this end, this paper presents a Gated Recurrent Unit (GRU) network that learns spatio-temporal relational features for the early anticipation of traffic accidents from dashcam video data. A post-hoc attention mechanism named Grad-CAM is integrated into the network to generate saliency maps as the visual explanation of the accident anticipation decision. An eye tracker captures human eye fixation points for generating human attention maps. The explainability of network-generated saliency maps is evaluated in comparison to human attention maps. Qualitative and quantitative results on a public crash dataset confirm that the proposed explainable network can anticipate an accident on average 4.57 seconds before it occurs, with 94.02% average precision. In further, various post-hoc attention-based XAI methods are evaluated and compared. It confirms that the Grad-CAM chosen by this study can generate high-quality, human-interpretable saliency maps (with 1.42 Normalized Scanpath Saliency) for explaining the crash anticipation decision. Importantly, results confirm that the proposed AI model, with a human-inspired design, can outperform humans in the accident anticipation.

Abstract (translated)

URL

https://arxiv.org/abs/2108.00273

PDF

https://arxiv.org/pdf/2108.00273.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot