Paper Reading AI Learner

sarcasm detection and quantification in arabic tweets

2021-08-03 11:48:27
Bashar Talafha, Muhy Eddin Za'ter, Samer Suleiman, Mahmoud Al-Ayyoub, Mohammed N. Al-Kabi

Abstract

The role of predicting sarcasm in the text is known as automatic sarcasm detection. Given the prevalence and challenges of sarcasm in sentiment-bearing text, this is a critical phase in most sentiment analysis tasks. With the increasing popularity and usage of different social media platforms among users around the world, people are using sarcasm more and more in their day-to-day conversations, social media posts and tweets, and it is considered as a way for people to express their sentiment about some certain topics or issues. As a result of the increasing popularity, researchers started to focus their research endeavors on detecting sarcasm from a text in different languages especially the English language. However, the task of sarcasm detection is a challenging task due to the nature of sarcastic texts; which can be relative and significantly differs from one person to another depending on the topic, region, the user's mentality and other factors. In addition to these challenges, sarcasm detection in the Arabic language has its own challenges due to the complexity of the Arabic language, such as being morphologically rich, with many dialects that significantly vary between each other, while also being lowly resourced. In recent years, only few research attempts started tackling the task of sarcasm detection in Arabic, including creating and collecting corpora, organizing workshops and establishing baseline models. This paper intends to create a new humanly annotated Arabic corpus for sarcasm detection collected from tweets, and implementing a new approach for sarcasm detection and quantification in Arabic tweets. The annotation technique followed in this paper is unique in sarcasm detection and the proposed approach tackles the problem as a regression problem instead of classification; i.e., the model attempts to predict the level of sarcasm instead of binary classification.

Abstract (translated)

URL

https://arxiv.org/abs/2108.01425

PDF

https://arxiv.org/pdf/2108.01425.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot