Paper Reading AI Learner

From augmented microscopy to the topological transformer: a new approach in cell image analysis for Alzheimer's research


Abstract

Cell image analysis is crucial in Alzheimer's research to detect the presence of A$\beta$ protein inhibiting cell function. Deep learning speeds up the process by making only low-level data sufficient for fruitful inspection. We first found Unet is most suitable in augmented microscopy by comparing performance in multi-class semantics segmentation. We develop the augmented microscopy method to capture nuclei in a brightfield image and the transformer using Unet model to convert an input image into a sequence of topological information. The performance regarding Intersection-over-Union is consistent concerning the choice of image preprocessing and ground-truth generation. Training model with data of a specific cell type demonstrates transfer learning applies to some extent. The topological transformer aims to extract persistence silhouettes or landscape signatures containing geometric information of a given image of cells. This feature extraction facilitates studying an image as a collection of one-dimensional data, substantially reducing computational costs. Using the transformer, we attempt grouping cell images by their cell type relying solely on topological features. Performances of the transformers followed by SVM, XGBoost, LGBM, and simple convolutional neural network classifiers are inferior to the conventional image classification. However, since this research initiates a new perspective in biomedical research by combining deep learning and topology for image analysis, we speculate follow-up investigation will reinforce our genuine regime.

Abstract (translated)

URL

https://arxiv.org/abs/2108.01625

PDF

https://arxiv.org/pdf/2108.01625.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot