Paper Reading AI Learner

Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images

2021-08-06 17:59:11
Nikhil Gosala, Abhinav Valada

Abstract

Bird's-Eye-View (BEV) maps have emerged as one of the most powerful representations for scene understanding due to their ability to provide rich spatial context while being easy to interpret and process. However, generating BEV maps requires complex multi-stage paradigms that encapsulate a series of distinct tasks such as depth estimation, ground plane estimation, and semantic segmentation. These sub-tasks are often learned in a disjoint manner which prevents the model from holistic reasoning and results in erroneous BEV maps. Moreover, existing algorithms only predict the semantics in the BEV space, which limits their use in applications where the notion of object instances is critical. In this work, we present the first end-to-end learning approach for directly predicting dense panoptic segmentation maps in the BEV, given a single monocular image in the frontal view (FV). Our architecture follows the top-down paradigm and incorporates a novel dense transformer module consisting of two distinct transformers that learn to independently map vertical and flat regions in the input image from the FV to the BEV. Additionally, we derive a mathematical formulation for the sensitivity of the FV-BEV transformation which allows us to intelligently weight pixels in the BEV space to account for the varying descriptiveness across the FV image. Extensive evaluations on the KITTI-360 and nuScenes datasets demonstrate that our approach exceeds the state-of-the-art in the PQ metric by 3.61 pp and 4.93 pp respectively.

Abstract (translated)

URL

https://arxiv.org/abs/2108.03227

PDF

https://arxiv.org/pdf/2108.03227.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot