Paper Reading AI Learner

Time-Frequency Localization Using Deep Convolutional Maxout Neural Network in Persian Speech Recognition

2021-08-09 05:46:58
Arash Dehghani, Seyyed Ali Seyyedsalehi

Abstract

In this paper, a CNN-based structure for time-frequency localization of audio signal information in the ASR acoustic model is proposed for Persian speech recognition. Research has shown that the receptive fields' time-frequency flexibility in some mammals' auditory neurons system improves recognition performance. Biosystems have inspired many artificial systems because of their high efficiency and performance, so time-frequency localization has been used extensively to improve system performance. In the last few years, much work has been done to localize time-frequency information in ASR systems, which has used the spatial immutability properties of methods such as TDNN, CNN and LSTM-RNN. However, most of these models have large parameter volumes and are challenging to train. In the structure we have designed, called Time-Frequency Convolutional Maxout Neural Network (TFCMNN), two parallel blocks consisting of 1D-CMNN each have weight sharing in one dimension, are applied simultaneously but independently to the feature vectors. Then their output is concatenated and applied to a fully connected Maxout network for classification. To improve the performance of this structure, we have used newly developed methods and models such as the maxout, Dropout, and weight normalization. Two experimental sets were designed and implemented on the Persian FARSDAT speech data set to evaluate the performance of this model compared to conventional 1D-CMNN models. According to the experimental results, the average recognition score of TFCMNN models is about 1.6% higher than the average of conventional models. In addition, the average training time of the TFCMNN models is about 17 hours lower than the average training time of traditional models. As a result, as mentioned in other references, time-frequency localization in ASR systems increases system accuracy and speeds up the model training process.

Abstract (translated)

URL

https://arxiv.org/abs/2108.03818

PDF

https://arxiv.org/pdf/2108.03818.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot