Paper Reading AI Learner

DRINet: A Dual-Representation Iterative Learning Network for Point Cloud Segmentation

2021-08-09 13:23:54
Maosheng Ye, Shuangjie Xu, Tongyi Cao, Qifeng Chen

Abstract

We present a novel and flexible architecture for point cloud segmentation with dual-representation iterative learning. In point cloud processing, different representations have their own pros and cons. Thus, finding suitable ways to represent point cloud data structure while keeping its own internal physical property such as permutation and scale-invariant is a fundamental problem. Therefore, we propose our work, DRINet, which serves as the basic network structure for dual-representation learning with great flexibility at feature transferring and less computation cost, especially for large-scale point clouds. DRINet mainly consists of two modules called Sparse Point-Voxel Feature Extraction and Sparse Voxel-Point Feature Extraction. By utilizing these two modules iteratively, features can be propagated between two different representations. We further propose a novel multi-scale pooling layer for pointwise locality learning to improve context information propagation. Our network achieves state-of-the-art results for point cloud classification and segmentation tasks on several datasets while maintaining high runtime efficiency. For large-scale outdoor scenarios, our method outperforms state-of-the-art methods with a real-time inference speed of 62ms per frame.

Abstract (translated)

URL

https://arxiv.org/abs/2108.04023

PDF

https://arxiv.org/pdf/2108.04023


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot