Paper Reading AI Learner

Towards artificially intelligent recycling Improving image processing for waste classification

2021-08-09 21:41:48
Youpeng Yu, Ryan Grammenos

Abstract

The ever-increasing amount of global refuse is overwhelming the waste and recycling management industries. The need for smart systems for environmental monitoring and the enhancement of recycling processes is thus greater than ever. Amongst these efforts lies IBM's Wastenet project which aims to improve recycling by using artificial intelligence for waste classification. The work reported in this paper builds on this project through the use of transfer learning and data augmentation techniques to ameliorate classification accuracy. Starting with a convolutional neural network (CNN), a systematic approach is followed for selecting appropriate splitting ratios and for tuning multiple training parameters including learning rate schedulers, layers freezing, batch sizes and loss functions, in the context of the given scenario which requires classification of waste into different recycling types. Results are compared and contrasted using 10-fold cross validation and demonstrate that the model developed achieves a 91.21% test accuracy. Subsequently, a range of data augmentation techniques are then incorporated into this work including flipping, rotation, shearing, zooming, and brightness control. Results show that these augmentation techniques further improve the test accuracy of the final model to 95.40%. Unlike other work reported in the field, this paper provides full details regarding the training of the model. Furthermore, the code for this work has been made open-source and we have demonstrated that the model can perform successful real-time classification of recycling waste items using a standard computer webcam.

Abstract (translated)

URL

https://arxiv.org/abs/2108.06274

PDF

https://arxiv.org/pdf/2108.06274.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot