Paper Reading AI Learner

MeetSum: Transforming Meeting Transcript Summarization using Transformers!

2021-08-13 16:34:09
Nima Sadri, Bohan Zhang, Bihan Liu

Abstract

Creating abstractive summaries from meeting transcripts has proven to be challenging due to the limited amount of labeled data available for training neural network models. Moreover, Transformer-based architectures have proven to beat state-of-the-art models in summarizing news data. In this paper, we utilize a Transformer-based Pointer Generator Network to generate abstract summaries for meeting transcripts. This model uses 2 LSTMs as an encoder and a decoder, a Pointer network which copies words from the inputted text, and a Generator network to produce out-of-vocabulary words (hence making the summary abstractive). Moreover, a coverage mechanism is used to avoid repetition of words in the generated summary. First, we show that training the model on a news summary dataset and using zero-shot learning to test it on the meeting dataset proves to produce better results than training it on the AMI meeting dataset. Second, we show that training this model first on out-of-domain data, such as the CNN-Dailymail dataset, followed by a fine-tuning stage on the AMI meeting dataset is able to improve the performance of the model significantly. We test our model on a testing set from the AMI dataset and report the ROUGE-2 score of the generated summary to compare with previous literature. We also report the Factual score of our summaries since it is a better benchmark for abstractive summaries since the ROUGE-2 score is limited to measuring word-overlaps. We show that our improved model is able to improve on previous models by at least 5 ROUGE-2 scores, which is a substantial improvement. Also, a qualitative analysis of the summaries generated by our model shows that these summaries and human-readable and indeed capture most of the important information from the transcripts.

Abstract (translated)

URL

https://arxiv.org/abs/2108.06310

PDF

https://arxiv.org/pdf/2108.06310.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot