Paper Reading AI Learner

Development of the InBan_CIDO Ontology by Reusing the Concepts along with Detecting Overlapping Information

2021-08-15 13:37:29
Archana Patel, Narayan C Debnath

Abstract

The covid19 pandemic is a global emergency that badly impacted the economies of various countries. Covid19 hit India when the growth rate of the country was at the lowest in the last 10 years. To semantically analyze the impact of this pandemic on the economy, it is curial to have an ontology. CIDO ontology is a well standardized ontology that is specially designed to assess the impact of coronavirus disease and utilize its results for future decision forecasting for the government, industry experts, and professionals in the field of various domains like research, medical advancement, technical innovative adoptions, and so on. However, this ontology does not analyze the impact of the Covid19 pandemic on the Indian banking sector. On the other side, Covid19IBO ontology has been developed to analyze the impact of the Covid19 pandemic on the Indian banking sector but this ontology does not reflect complete information of Covid19 data. Resultantly, users cannot get all the relevant information about Covid19 and its impact on the Indian economy. This article aims to extend the CIDO ontology to show the impact of Covid19 on the Indian economy sector by reusing the concepts from other data sources. We also provide a simplified schema matching approach that detects the overlapping information among the ontologies. The experimental analysis proves that the proposed approach has reasonable results.

Abstract (translated)

URL

https://arxiv.org/abs/2108.06742

PDF

https://arxiv.org/pdf/2108.06742.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot