Paper Reading AI Learner

A Sparse Coding Interpretation of Neural Networks and Theoretical Implications

2021-08-14 21:54:47
Joshua Bowren

Abstract

Neural networks, specifically deep convolutional neural networks, have achieved unprecedented performance in various computer vision tasks, but the rationale for the computations and structures of successful neural networks is not fully understood. Theories abound for the aptitude of convolutional neural networks for image classification, but less is understood about why such models would be capable of complex visual tasks such as inference and anomaly identification. Here, we propose a sparse coding interpretation of neural networks that have ReLU activation and of convolutional neural networks in particular. In sparse coding, when the model's basis functions are assumed to be orthogonal, the optimal coefficients are given by the soft-threshold function of the basis functions projected onto the input image. In a non-negative variant of sparse coding, the soft-threshold function becomes a ReLU. Here, we derive these solutions via sparse coding with orthogonal-assumed basis functions, then we derive the convolutional neural network forward transformation from a modified non-negative orthogonal sparse coding model with an exponential prior parameter for each sparse coding coefficient. Next, we derive a complete convolutional neural network without normalization and pooling by adding logistic regression to a hierarchical sparse coding model. Finally we motivate potentially more robust forward transformations by maintaining sparse priors in convolutional neural networks as well performing a stronger nonlinear transformation.

Abstract (translated)

URL

https://arxiv.org/abs/2108.06622

PDF

https://arxiv.org/pdf/2108.06622.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot