Paper Reading AI Learner

MOI-Mixer: Improving MLP-Mixer with Multi Order Interactions in Sequential Recommendation

2021-08-17 08:38:49
Hojoon Lee, Dongyoon Hwang, Sunghwan Hong, Changyeon Kim, Seungryong Kim, Jaegul Choo

Abstract

Successful sequential recommendation systems rely on accurately capturing the user's short-term and long-term interest. Although Transformer-based models achieved state-of-the-art performance in the sequential recommendation task, they generally require quadratic memory and time complexity to the sequence length, making it difficult to extract the long-term interest of users. On the other hand, Multi-Layer Perceptrons (MLP)-based models, renowned for their linear memory and time complexity, have recently shown competitive results compared to Transformer in various tasks. Given the availability of a massive amount of the user's behavior history, the linear memory and time complexity of MLP-based models make them a promising alternative to explore in the sequential recommendation task. To this end, we adopted MLP-based models in sequential recommendation but consistently observed that MLP-based methods obtain lower performance than those of Transformer despite their computational benefits. From experiments, we observed that introducing explicit high-order interactions to MLP layers mitigates such performance gap. In response, we propose the Multi-Order Interaction (MOI) layer, which is capable of expressing an arbitrary order of interactions within the inputs while maintaining the memory and time complexity of the MLP layer. By replacing the MLP layer with the MOI layer, our model was able to achieve comparable performance with Transformer-based models while retaining the MLP-based models' computational benefits.

Abstract (translated)

URL

https://arxiv.org/abs/2108.07505

PDF

https://arxiv.org/pdf/2108.07505.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot