Paper Reading AI Learner

Object Disparity

2021-08-18 02:11:28
Ynjiun Paul Wang

Abstract

Most of stereo vision works are focusing on computing the dense pixel disparity of a given pair of left and right images. A camera pair usually required lens undistortion and stereo calibration to provide an undistorted epipolar line calibrated image pair for accurate dense pixel disparity computation. Due to noise, object occlusion, repetitive or lack of texture and limitation of matching algorithms, the pixel disparity accuracy usually suffers the most at those object boundary areas. Although statistically the total number of pixel disparity errors might be low (under 2% according to the Kitti Vision Benchmark of current top ranking algorithms), the percentage of these disparity errors at object boundaries are very high. This renders the subsequence 3D object distance detection with much lower accuracy than desired. This paper proposed a different approach for solving a 3D object distance detection by detecting object disparity directly without going through a dense pixel disparity computation. An example squeezenet Object Disparity-SSD (OD-SSD) was constructed to demonstrate an efficient object disparity detection with comparable accuracy compared with Kitti dataset pixel disparity ground truth. Further training and testing results with mixed image dataset captured by several different stereo systems may suggest that an OD-SSD might be agnostic to stereo system parameters such as a baseline, FOV, lens distortion, even left/right camera epipolar line misalignment.

Abstract (translated)

URL

https://arxiv.org/abs/2108.07939

PDF

https://arxiv.org/pdf/2108.07939.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot