Paper Reading AI Learner

Towards Deep and Efficient: A Deep Siamese Self-Attention Fully Efficient Convolutional Network for Change Detection in VHR Images

2021-08-18 14:02:38
Hongruixuan Chen, Chen Wu, Bo Du

Abstract

Recently, FCNs have attracted widespread attention in the CD field. In pursuit of better CD performance, it has become a tendency to design deeper and more complicated FCNs, which inevitably brings about huge numbers of parameters and an unbearable computational burden. With the goal of designing a quite deep architecture to obtain more precise CD results while simultaneously decreasing parameter numbers to improve efficiency, in this work, we present a very deep and efficient CD network, entitled EffCDNet. In EffCDNet, to reduce the numerous parameters associated with deep architecture, an efficient convolution consisting of depth-wise convolution and group convolution with a channel shuffle mechanism is introduced to replace standard convolutional layers. In terms of the specific network architecture, EffCDNet does not use mainstream UNet-like architecture, but rather adopts the architecture with a very deep encoder and a lightweight decoder. In the very deep encoder, two very deep siamese streams stacked by efficient convolution first extract two highly representative and informative feature maps from input image-pairs. Subsequently, an efficient ASPP module is designed to capture multi-scale change information. In the lightweight decoder, a recurrent criss-cross self-attention (RCCA) module is applied to efficiently utilize non-local similar feature representations to enhance discriminability for each pixel, thus effectively separating the changed and unchanged regions. Moreover, to tackle the optimization problem in confused pixels, two novel loss functions based on information entropy are presented. On two challenging CD datasets, our approach outperforms other SOTA FCN-based methods, with only benchmark-level parameter numbers and quite low computational overhead.

Abstract (translated)

URL

https://arxiv.org/abs/2108.08157

PDF

https://arxiv.org/pdf/2108.08157.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot