Paper Reading AI Learner

ALLNet: A Hybrid Convolutional Neural Network to Improve Diagnosis of Acute Lymphocytic Leukemia in White Blood Cells

2021-08-18 15:24:53
Sai Mattapalli, Rishi Athavale
     

Abstract

Due to morphological similarity at the microscopic level, making an accurate and time-sensitive distinction between blood cells affected by Acute Lymphocytic Leukemia (ALL) and their healthy counterparts calls for the usage of machine learning architectures. However, three of the most common models, VGG, ResNet, and Inception, each come with their own set of flaws with room for improvement which demands the need for a superior model. ALLNet, the proposed hybrid convolutional neural network architecture, consists of a combination of the VGG, ResNet, and Inception models. The ALL Challenge dataset of ISBI 2019 (available here) contains 10,691 images of white blood cells which were used to train and test the models. 7,272 of the images in the dataset are of cells with ALL and 3,419 of them are of healthy cells. Of the images, 60% were used to train the model, 20% were used for the cross-validation set, and 20% were used for the test set. ALLNet outperformed the VGG, ResNet, and the Inception models across the board, achieving an accuracy of 92.6567%, a sensitivity of 95.5304%, a specificity of 85.9155%, an AUC score of 0.966347, and an F1 score of 0.94803 in the cross-validation set. In the test set, ALLNet achieved an accuracy of 92.0991%, a sensitivity of 96.5446%, a specificity of 82.8035%, an AUC score of 0.959972, and an F1 score of 0.942963. The utilization of ALLNet in the clinical workspace can better treat the thousands of people suffering from ALL across the world, many of whom are children.

Abstract (translated)

URL

https://arxiv.org/abs/2108.08195

PDF

https://arxiv.org/pdf/2108.08195.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot