Paper Reading AI Learner

Interpreting Face Inference Models using Hierarchical Network Dissection

2021-08-23 18:52:47
Divyang Teotia, Agata Lapedriza, Sarah Ostadabbas

Abstract

This paper presents Hierarchical Network Dissection, a general pipeline to interpret the internal representation of face-centric inference models. Using a probabilistic formulation, Hierarchical Network Dissection pairs units of the model with concepts in our "Face Dictionary" (a collection of facial concepts with corresponding sample images). Our pipeline is inspired by Network Dissection, a popular interpretability model for object-centric and scene-centric models. However, our formulation allows to deal with two important challenges of face-centric models that Network Dissection cannot address: (1) spacial overlap of concepts: there are different facial concepts that simultaneously occur in the same region of the image, like "nose" (facial part) and "pointy nose" (facial attribute); and (2) global concepts: there are units with affinity to concepts that do not refer to specific locations of the face (e.g. apparent age). To validate the effectiveness of our unit-concept pairing formulation, we first conduct controlled experiments on biased data. These experiments illustrate how Hierarchical Network Dissection can be used to discover bias in the training data. Then, we dissect different face-centric inference models trained on widely-used facial datasets. The results show models trained for different tasks have different internal representations. Furthermore, the interpretability results reveal some biases in the training data and some interesting characteristics of the face-centric inference tasks.

Abstract (translated)

URL

https://arxiv.org/abs/2108.10360

PDF

https://arxiv.org/pdf/2108.10360.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot