Paper Reading AI Learner

Curricular SincNet: Towards Robust Deep Speaker Recognition by Emphasizing Hard Samples in Latent Space

2021-08-21 09:13:45
Labib Chowdhury, Mustafa Kamal, Najia Hasan, Nabeel Mohammed

Abstract

Deep learning models have become an increasingly preferred option for biometric recognition systems, such as speaker recognition. SincNet, a deep neural network architecture, gained popularity in speaker recognition tasks due to its parameterized sinc functions that allow it to work directly on the speech signal. The original SincNet architecture uses the softmax loss, which may not be the most suitable choice for recognition-based tasks. Such loss functions do not impose inter-class margins nor differentiate between easy and hard training samples. Curriculum learning, particularly those leveraging angular margin-based losses, has proven very successful in other biometric applications such as face recognition. The advantage of such a curriculum learning-based techniques is that it will impose inter-class margins as well as taking to account easy and hard samples. In this paper, we propose Curricular SincNet (CL-SincNet), an improved SincNet model where we use a curricular loss function to train the SincNet architecture. The proposed model is evaluated on multiple datasets using intra-dataset and inter-dataset evaluation protocols. In both settings, the model performs competitively with other previously published work. In the case of inter-dataset testing, it achieves the best overall results with a reduction of 4\% error rate compare to SincNet and other published work.

Abstract (translated)

URL

https://arxiv.org/abs/2108.10714

PDF

https://arxiv.org/pdf/2108.10714.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot