Paper Reading AI Learner

Learning the Hypotheses Space from data: Learning Space and U-curve Property

2020-11-30 13:55:04
Diego Marcondes, Adilson Simonis, Junior Barrera

Abstract

This paper presents an extension of the classical agnostic PAC learning model in which learning problems are modelled not only by a Hypothesis Space $\mathcal{H}$, but also by a Learning Space $\mathbb{L}(\mathcal{H})$, which is a cover of $\mathcal{H}$, constrained by a VC-dimension property, that is a suitable domain for Model Selection algorithms. Our main contribution is a data driven general learning algorithm to perform regularized Model Selection on $\mathbb{L}(\mathcal{H})$. A remarkable, formally proved, consequence of this approach are conditions on $\mathbb{L}(\mathcal{H})$ and on the loss function that lead to estimated out-of-sample error surfaces which are true U-curves on $\mathbb{L}(\mathcal{H})$ chains, enabling a more efficient search on $\mathbb{L}(\mathcal{H})$. To our knowledge, this is the first rigorous result asserting that a non exhaustive search of a family of candidate models can return an optimal solution. In this new framework, an U-curve optimization algorithm becomes a natural component of Model Selection, hence of learning algorithms. The abstract general framework proposed here may have important implications on modern learning models and on areas such as Neural Architecture Search.

Abstract (translated)

URL

https://arxiv.org/abs/2001.09532

PDF

https://arxiv.org/pdf/2001.09532.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot