Paper Reading AI Learner

How Does Adversarial Fine-Tuning Benefit BERT?

2021-08-31 03:39:06
Javid Ebrahimi, Hao Yang, Wei Zhang

Abstract

Adversarial training (AT) is one of the most reliable methods for defending against adversarial attacks in machine learning. Variants of this method have been used as regularization mechanisms to achieve SOTA results on NLP benchmarks, and they have been found to be useful for transfer learning and continual learning. We search for the reasons for the effectiveness of AT by contrasting vanilla and adversarially fine-tuned BERT models. We identify partial preservation of BERT's syntactic abilities during fine-tuning as the key to the success of AT. We observe that adversarially fine-tuned models remain more faithful to BERT's language modeling behavior and are more sensitive to the word order. As concrete examples of syntactic abilities, an adversarially fine-tuned model could have an advantage of up to 38% on anaphora agreement and up to 11% on dependency parsing. Our analysis demonstrates that vanilla fine-tuning oversimplifies the sentence representation by focusing heavily on one or a few label-indicative words. AT, however, moderates the effect of these influential words and encourages representational diversity. This allows for a more hierarchical representation of a sentence and leads to the mitigation of BERT's loss of syntactic abilities.

Abstract (translated)

URL

https://arxiv.org/abs/2108.13602

PDF

https://arxiv.org/pdf/2108.13602.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot