Paper Reading AI Learner

Deep DNA Storage: Scalable and Robust DNA Storage via Coding Theory and Deep Learning

2021-08-31 18:21:20
Daniella Bar-Lev, Itai Orr, Omer Sabary, Tuvi Etzion, Eitan Yaakobi

Abstract

The concept of DNA storage was first suggested in 1959 by Richard Feynman who shared his vision regarding nanotechnology in the talk "There is plenty of room at the bottom". Later, towards the end of the 20-th century, the interest in storage solutions based on DNA molecules was increased as a result of the human genome project which in turn led to a significant progress in sequencing and assembly methods. DNA storage enjoys major advantages over the well-established magnetic and optical storage solutions. As opposed to magnetic solutions, DNA storage does not require electrical supply to maintain data integrity and is superior to other storage solutions in both density and durability. Given the trends in cost decreases of DNA synthesis and sequencing, it is now acknowledged that within the next 10-15 years DNA storage may become a highly competitive archiving technology and probably later the main such technology. With that said, the current implementations of DNA based storage systems are very limited and are not fully optimized to address the unique pattern of errors which characterize the synthesis and sequencing processes. In this work, we propose a robust, efficient and scalable solution to implement DNA-based storage systems. Our method deploys Deep Neural Networks (DNN) which reconstruct a sequence of letters based on imperfect cluster of copies generated by the synthesis and sequencing processes. A tailor-made Error-Correcting Code (ECC) is utilized to combat patterns of errors which occur during this process. Since our reconstruction method is adapted to imperfect clusters, our method overcomes the time bottleneck of the noisy DNA copies clustering process by allowing the use of a rapid and scalable pseudo-clustering instead. Our architecture combines between convolutions and transformers blocks and is trained using synthetic data modelled after real data statistics.

Abstract (translated)

URL

https://arxiv.org/abs/2109.00031

PDF

https://arxiv.org/pdf/2109.00031.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot