Paper Reading AI Learner

Effectiveness of Deep Networks in NLP using BiDAF as an example architecture

2021-08-31 20:50:18
Soumyendu Sarkar

Abstract

Question Answering with NLP has progressed through the evolution of advanced model architectures like BERT and BiDAF and earlier word, character, and context-based embeddings. As BERT has leapfrogged the accuracy of models, an element of the next frontier can be the introduction of deep networks and an effective way to train them. In this context, I explored the effectiveness of deep networks focussing on the model encoder layer of BiDAF. BiDAF with its heterogeneous layers provides the opportunity not only to explore the effectiveness of deep networks but also to evaluate whether the refinements made in lower layers are additive to the refinements made in the upper layers of the model architecture. I believe the next greatest model in NLP will in fact fold in a solid language modeling like BERT with a composite architecture which will bring in refinements in addition to generic language modeling and will have a more extensive layered architecture. I experimented with the Bypass network, Residual Highway network, and DenseNet architectures. In addition, I evaluated the effectiveness of ensembling the last few layers of the network. I also studied the difference character embeddings make in adding them to the word embeddings, and whether the effects are additive with deep networks. My studies indicate that deep networks are in fact effective in giving a boost. Also, the refinements in the lower layers like embeddings are passed on additively to the gains made through deep networks.

Abstract (translated)

URL

https://arxiv.org/abs/2109.00074

PDF

https://arxiv.org/pdf/2109.00074.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot