Paper Reading AI Learner

How Suitable Are Subword Segmentation Strategies for Translating Non-Concatenative Morphology?

2021-09-02 17:23:21
Chantal Amrhein, Rico Sennrich

Abstract

Data-driven subword segmentation has become the default strategy for open-vocabulary machine translation and other NLP tasks, but may not be sufficiently generic for optimal learning of non-concatenative morphology. We design a test suite to evaluate segmentation strategies on different types of morphological phenomena in a controlled, semi-synthetic setting. In our experiments, we compare how well machine translation models trained on subword- and character-level can translate these morphological phenomena. We find that learning to analyse and generate morphologically complex surface representations is still challenging, especially for non-concatenative morphological phenomena like reduplication or vowel harmony and for rare word stems. Based on our results, we recommend that novel text representation strategies be tested on a range of typologically diverse languages to minimise the risk of adopting a strategy that inadvertently disadvantages certain languages.

Abstract (translated)

URL

https://arxiv.org/abs/2109.01100

PDF

https://arxiv.org/pdf/2109.01100.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot