Paper Reading AI Learner

NAT: Neural Architecture Transformer for Accurate and Compact Architectures

2020-01-13 13:39:25
Yong Guo, Yin Zheng, Mingkui Tan, Qi Chen, Jian Chen, Peilin Zhao, Junzhou Huang

Abstract

Designing effective architectures is one of the key factors behind the success of deep neural networks. Existing deep architectures are either manually designed or automatically searched by some Neural Architecture Search (NAS) methods. However, even a well-searched architecture may still contain many non-significant or redundant modules or operations (e.g., convolution or pooling), which may not only incur substantial memory consumption and computation cost but also deteriorate the performance. Thus, it is necessary to optimize the operations inside an architecture to improve the performance without introducing extra computation cost. Unfortunately, such a constrained optimization problem is NP-hard. To make the problem feasible, we cast the optimization problem into a Markov decision process (MDP) and seek to learn a Neural Architecture Transformer (NAT) to replace the redundant operations with the more computationally efficient ones (e.g., skip connection or directly removing the connection). Based on MDP, we learn NAT by exploiting reinforcement learning to obtain the optimization policies w.r.t. different architectures. To verify the effectiveness of the proposed strategies, we apply NAT on both hand-crafted architectures and NAS based architectures. Extensive experiments on two benchmark datasets, i.e., CIFAR-10 and ImageNet, demonstrate that the transformed architecture by NAT significantly outperforms both its original form and those architectures optimized by existing methods.

Abstract (translated)

URL

https://arxiv.org/abs/1910.14488

PDF

https://arxiv.org/pdf/1910.14488.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot