Paper Reading AI Learner

Spatially varying white balancing for mixed and non-uniform illuminants

2021-09-03 07:26:11
Teruaki Akazawa, Yuma Kinoshita, Hitoshi Kiya

Abstract

In this paper, we propose a novel white balance adjustment, called "spatially varying white balancing," for single, mixed, and non-uniform illuminants. By using n diagonal matrices along with a weight, the proposed method can reduce lighting effects on all spatially varying colors in an image under such illumination conditions. In contrast, conventional white balance adjustments do not consider the correcting of all colors except under a single illuminant. Also, multi-color balance adjustments can map multiple colors into corresponding ground truth colors, although they may cause the rank deficiency problem to occur as a non-diagonal matrix is used, unlike white balancing. In an experiment, the effectiveness of the proposed method is shown under mixed and non-uniform illuminants, compared with conventional white and multi-color balancing. Moreover, under a single illuminant, the proposed method has almost the same performance as the conventional white balancing.

Abstract (translated)

URL

https://arxiv.org/abs/2109.01350

PDF

https://arxiv.org/pdf/2109.01350.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot