Paper Reading AI Learner

Reconfigurable co-processor architecture with limited numerical precision to accelerate deep convolutional neural networks

2021-08-21 09:50:54
Sasindu Wijeratne, Sandaruwan Jayaweera, Mahesh Dananjaya, Ajith Pasqual

Abstract

Convolutional Neural Networks (CNNs) are widely used in deep learning applications, e.g. visual systems, robotics etc. However, existing software solutions are not efficient. Therefore, many hardware accelerators have been proposed optimizing performance, power and resource utilization of the implementation. Amongst existing solutions, Field Programmable Gate Array (FPGA) based architecture provides better cost-energy-performance trade-offs as well as scalability and minimizing development time. In this paper, we present a model-independent reconfigurable co-processing architecture to accelerate CNNs. Our architecture consists of parallel Multiply and Accumulate (MAC) units with caching techniques and interconnection networks to exploit maximum data parallelism. In contrast to existing solutions, we introduce limited precision 32 bit Q-format fixed point quantization for arithmetic representations and operations. As a result, our architecture achieved significant reduction in resource utilization with competitive accuracy. Furthermore, we developed an assembly-type microinstructions to access the co-processing fabric to manage layer-wise parallelism, thereby making re-use of limited resources. Finally, we have tested our architecture up to 9x9 kernel size on Xilinx Virtex 7 FPGA, achieving a throughput of up to 226.2 GOp/S for 3x3 kernel size.

Abstract (translated)

URL

https://arxiv.org/abs/2109.03040

PDF

https://arxiv.org/pdf/2109.03040.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot