Paper Reading AI Learner

Mixed Attention Transformer for LeveragingWord-Level Knowledge to Neural Cross-Lingual Information Retrieval

2021-09-07 00:33:14
Zhiqi Huang, Hamed Bonab, Sheikh Muhammad Sarwar, Razieh Rahimi, James Allan

Abstract

Pretrained contextualized representations offer great success for many downstream tasks, including document ranking. The multilingual versions of such pretrained representations provide a possibility of jointly learning many languages with the same model. Although it is expected to gain big with such joint training, in the case of cross lingual information retrieval (CLIR), the models under a multilingual setting are not achieving the same level of performance as those under a monolingual setting. We hypothesize that the performance drop is due to the translation gap between query and documents. In the monolingual retrieval task, because of the same lexical inputs, it is easier for model to identify the query terms that occurred in documents. However, in the multilingual pretrained models that the words in different languages are projected into the same hyperspace, the model tends to translate query terms into related terms, i.e., terms that appear in a similar context, in addition to or sometimes rather than synonyms in the target language. This property is creating difficulties for the model to connect terms that cooccur in both query and document. To address this issue, we propose a novel Mixed Attention Transformer (MAT) that incorporates external word level knowledge, such as a dictionary or translation table. We design a sandwich like architecture to embed MAT into the recent transformer based deep neural models. By encoding the translation knowledge into an attention matrix, the model with MAT is able to focus on the mutually translated words in the input sequence. Experimental results demonstrate the effectiveness of the external knowledge and the significant improvement of MAT embedded neural reranking model on CLIR task.

Abstract (translated)

URL

https://arxiv.org/abs/2109.02789

PDF

https://arxiv.org/pdf/2109.02789.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot