Paper Reading AI Learner

Learning Local-Global Contextual Adaptation for Fully End-to-End Bottom-Up Human Pose Estimation

2021-09-08 13:15:01
Nan Xue, Tianfu Wu, Zhen Zhang, Gui-Song Xia

Abstract

This paper presents a method of learning Local-GlObal Contextual Adaptation for fully end-to-end and fast bottom-up human Pose estimation, dubbed as LOGO-CAP. It is built on the conceptually simple center-offset formulation that lacks inaccuracy for pose estimation. When revisiting the bottom-up human pose estimation with the thought of "thinking, fast and slow" by D. Kahneman, we introduce a "slow keypointer" to remedy the lack of sufficient accuracy of the "fast keypointer". In learning the "slow keypointer", the proposed LOGO-CAP lifts the initial "fast" keypoints by offset predictions to keypoint expansion maps (KEMs) to counter their uncertainty in two modules. Firstly, the local KEMs (e.g., 11x11) are extracted from a low-dimensional feature map. A proposed convolutional message passing module learns to "re-focus" the local KEMs to the keypoint attraction maps (KAMs) by accounting for the structured output prediction nature of human pose estimation, which is directly supervised by the object keypoint similarity (OKS) loss in training. Secondly, the global KEMs are extracted, with a sufficiently large region-of-interest (e.g., 97x97), from the keypoint heatmaps that are computed by a direct map-to-map regression. Then, a local-global contextual adaptation module is proposed to convolve the global KEMs using the learned KAMs as the kernels. This convolution can be understood as the learnable offsets guided deformable and dynamic convolution in a pose-sensitive way. The proposed method is end-to-end trainable with near real-time inference speed, obtaining state-of-the-art performance on the COCO keypoint benchmark for bottom-up human pose estimation. With the COCO trained model, our LOGO-CAP also outperforms prior arts by a large margin on the challenging OCHuman dataset.

Abstract (translated)

URL

https://arxiv.org/abs/2109.03622

PDF

https://arxiv.org/pdf/2109.03622.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot