Paper Reading AI Learner

Deep Active Inference for Pixel-Based Discrete Control: Evaluation on the Car Racing Problem

2021-09-09 10:33:36
Niels van Hoeffelen, Pablo Lanillos

Abstract

Despite the potential of active inference for visual-based control, learning the model and the preferences (priors) while interacting with the environment is challenging. Here, we study the performance of a deep active inference (dAIF) agent on OpenAI's car racing benchmark, where there is no access to the car's state. The agent learns to encode the world's state from high-dimensional input through unsupervised representation learning. State inference and control are learned end-to-end by optimizing the expected free energy. Results show that our model achieves comparable performance to deep Q-learning. However, vanilla dAIF does not reach state-of-the-art performance compared to other world model approaches. Hence, we discuss the current model implementation's limitations and potential architectures to overcome them.

Abstract (translated)

URL

https://arxiv.org/abs/2109.04155

PDF

https://arxiv.org/pdf/2109.04155.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot