Paper Reading AI Learner

Modified Supervised Contrastive Learning for Detecting Anomalous Driving Behaviours

2021-09-09 03:50:19
Shehroz S. Khan, Ziting Shen, Haoying Sun, Ax Patel, Ali Abedi

Abstract

Detecting distracted driving behaviours is important to reduce millions of deaths and injuries occurring worldwide. Distracted or anomalous driving behaviours are deviations from the 'normal' driving that need to be identified correctly to alert the driver. However, these driving behaviours do not comprise of one specific type of driving style and their distribution can be different during training and testing phases of a classifier. We formulate this problem as a supervised contrastive learning approach to learn a visual representation to detect normal, and seen and unseen anomalous driving behaviours. We made a change to the standard contrastive loss function to adjust the similarity of negative pairs to aid the optimization. Normally, the (self) supervised contrastive framework contains an encoder followed by a projection head, which is omitted during testing phase as the encoding layers are considered to contain general visual representative information. However, we assert that for supervised contrastive learning task, including projection head will be beneficial. We showed our results on a Driver Anomaly Detection dataset that contains 783 minutes of video recordings of normal and anomalous driving behaviours of 31 drivers from various from top and front cameras (both depth and infrared). We also performed an extra step of fine tuning the labels in this dataset. Out of 9 video modalities combinations, our modified contrastive approach improved the ROC AUC on 7 in comparison to the baseline models (from 3.12% to 8.91% for different modalities); the remaining two models also had manual labelling. We performed statistical tests that showed evidence that our modifications perform better than the baseline contrastive models. Finally, the results showed that the fusion of depth and infrared modalities from top and front view achieved the best AUC ROC of 0.9738 and AUC PR of 0.9772.

Abstract (translated)

URL

https://arxiv.org/abs/2109.04021

PDF

https://arxiv.org/pdf/2109.04021.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot