Paper Reading AI Learner

A discrete optimisation approach for target path planning whilst evading sensors

2021-09-10 05:20:49
J.E. Beasley

Abstract

In this paper we deal with a practical problem that arises in military situations. The problem is to plan a path for one, or more, agents to reach a target without being detected by enemy sensors. Agents are not passive, rather they can initiate actions which aid evasion. They can knockout, completely disable, sensors. They can also confuse sensors, so reduce sensor detection probabilities. Agent actions are path dependent and time limited. By path dependent we mean that an agent needs to be sufficiently close to a sensor to knock it out. By time limited we mean that a limit is imposed on how long a sensor is knocked out or confused before it reverts back to its original operating state. The approach adopted breaks the continuous space in which agents move into a discrete space. This enables the problem to be formulated as a zero-one integer program with linear constraints. The advantage of representing the problem in this manner is that powerful commercial software optimisation packages exist to solve the problem to proven global optimality. A heuristic for the problem based on successive shortest paths is also presented. Computational results are presented for a number of randomly generated test problems.

Abstract (translated)

URL

https://arxiv.org/abs/2106.08826

PDF

https://arxiv.org/pdf/2106.08826.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot