Paper Reading AI Learner

Directional MCLP Analysis and Reconstruction for Spatial Speech Communication

2021-09-09 20:16:48
Srikanth Raj Chetupalli, Thippur V. Sreenivas

Abstract

Spatial speech communication, i.e., the reconstruction of spoken signal along with the relative speaker position in the enclosure (reverberation information) is considered in this paper. Directional, diffuse components and the source position information are estimated at the transmitter, and perceptually effective reproduction is considered at the receiver. We consider spatially distributed microphone arrays for signal acquisition, and node specific signal estimation, along with its direction of arrival (DoA) estimation. Short-time Fourier transform (STFT) domain multi-channel linear prediction (MCLP) approach is used to model the diffuse component and relative acoustic transfer function is used to model the direct signal component. Distortion-less array response constraint and the time-varying complex Gaussian source model are used in the joint estimation of source DoA and the constituent signal components, separately at each node. The intersection between DoA directions at each node is used to compute the source position. Signal components computed at the node nearest to the estimated source position are taken as the signals for transmission. At the receiver, a four channel loud speaker (LS) setup is used for spatial reproduction, in which the source spatial image is reproduced relative to a chosen virtual listener position in the transmitter enclosure. Vector base amplitude panning (VBAP) method is used for direct component reproduction using the LS setup and the diffuse component is reproduced equally from all the loud speakers after decorrelation. This scheme of spatial speech communication is shown to be effective and more natural for hands-free telecommunication, through either loudspeaker listening or binaural headphone listening with head related transfer function (HRTF) based presentation.

Abstract (translated)

URL

https://arxiv.org/abs/2109.04544

PDF

https://arxiv.org/pdf/2109.04544.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot