Paper Reading AI Learner

DeepPyram: Enabling Pyramid View and Deformable Pyramid Reception for Semantic Segmentation in Cataract Surgery Videos

2021-09-11 19:31:52
Negin Ghamsarian, Mario Taschwer, klaus Schoeffmann

Abstract

Semantic segmentation in cataract surgery has a wide range of applications contributing to surgical outcome enhancement and clinical risk reduction. However, the varying issues in segmenting the different relevant instances make the designation of a unique network quite challenging. This paper proposes a semantic segmentation network termed as DeepPyram that can achieve superior performance in segmenting relevant objects in cataract surgery videos with varying issues. This superiority mainly originates from three modules: (i) Pyramid View Fusion, which provides a varying-angle global view of the surrounding region centering at each pixel position in the input convolutional feature map; (ii) Deformable Pyramid Reception, which enables a wide deformable receptive field that can adapt to geometric transformations in the object of interest; and (iii) Pyramid Loss that adaptively supervises multi-scale semantic feature maps. These modules can effectively boost semantic segmentation performance, especially in the case of transparency, deformability, scalability, and blunt edges in objects. The proposed approach is evaluated using four datasets of cataract surgery for objects with different contextual features and compared with thirteen state-of-the-art segmentation networks. The experimental results confirm that DeepPyram outperforms the rival approaches without imposing additional trainable parameters. Our comprehensive ablation study further proves the effectiveness of the proposed modules.

Abstract (translated)

URL

https://arxiv.org/abs/2109.05352

PDF

https://arxiv.org/pdf/2109.05352.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot