Paper Reading AI Learner

A Joint Graph and Image Convolution Network for Automatic Brain Tumor Segmentation

2021-09-12 18:16:59
Camillo Saueressig, Adam Berkley, Reshma Munbodh, Ritambhara Singh

Abstract

We present a joint graph convolution-image convolution neural network as our submission to the Brain Tumor Segmentation (BraTS) 2021 challenge. We model each brain as a graph composed of distinct image regions, which is initially segmented by a graph neural network (GNN). Subsequently, the tumorous volume identified by the GNN is further refined by a simple (voxel) convolutional neural network (CNN), which produces the final segmentation. This approach captures both global brain feature interactions via the graphical representation and local image details through the use of convolutional filters. We find that the GNN component by itself can effectively identify and segment the brain tumors. The addition of the CNN further improves the median performance of the model by 2 percent across all metrics evaluated. On the validation set, our joint GNN-CNN model achieves mean Dice scores of 0.89, 0.81, 0.73 and mean Hausdorff distances (95th percentile) of 6.8, 12.6, 28.2mm on the whole tumor, core tumor, and enhancing tumor, respectively.

Abstract (translated)

URL

https://arxiv.org/abs/2109.05580

PDF

https://arxiv.org/pdf/2109.05580.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot