Paper Reading AI Learner

Evolving Architectures with Gradient Misalignment toward Low Adversarial Transferability

2021-09-13 12:41:53
Kevin Richard G. Operiano, Wanchalerm Pora, Hitoshi Iba, Hiroshi Kera

Abstract

Deep neural network image classifiers are known to be susceptible not only to adversarial examples created for them but even those created for others. This phenomenon poses a potential security risk in various black-box systems relying on image classifiers. The reason behind such transferability of adversarial examples is not yet fully understood and many studies have proposed training methods to obtain classifiers with low transferability. In this study, we address this problem from a novel perspective through investigating the contribution of the network architecture to transferability. Specifically, we propose an architecture searching framework that employs neuroevolution to evolve network architectures and the gradient misalignment loss to encourage networks to converge into dissimilar functions after training. Our experiments show that the proposed framework successfully discovers architectures that reduce transferability from four standard networks including ResNet and VGG, while maintaining a good accuracy on unperturbed images. In addition, the evolved networks trained with gradient misalignment exhibit significantly lower transferability compared to standard networks trained with gradient misalignment, which indicates that the network architecture plays an important role in reducing transferability. This study demonstrates that designing or exploring proper network architectures is a promising approach to tackle the transferability issue and train adversarially robust image classifiers.

Abstract (translated)

URL

https://arxiv.org/abs/2109.05919

PDF

https://arxiv.org/pdf/2109.05919.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot