Paper Reading AI Learner

Show Me How To Revise: Improving Lexically Constrained Sentence Generation with XLNet

2021-09-13 09:21:07
Xingwei He, Victor O.K. Li

Abstract

Lexically constrained sentence generation allows the incorporation of prior knowledge such as lexical constraints into the output. This technique has been applied to machine translation, and dialog response generation. Previous work usually used Markov Chain Monte Carlo (MCMC) sampling to generate lexically constrained sentences, but they randomly determined the position to be edited and the action to be taken, resulting in many invalid refinements. To overcome this challenge, we used a classifier to instruct the MCMC-based models where and how to refine the candidate sentences. First, we developed two methods to create synthetic data on which the pre-trained model is fine-tuned to obtain a reliable classifier. Next, we proposed a two-step approach, "Predict and Revise", for constrained sentence generation. During the predict step, we leveraged the classifier to compute the learned prior for the candidate sentence. During the revise step, we resorted to MCMC sampling to revise the candidate sentence by conducting a sampled action at a sampled position drawn from the learned prior. We compared our proposed models with many strong baselines on two tasks, generating sentences with lexical constraints and text infilling. Experimental results have demonstrated that our proposed model performs much better than the previous work in terms of sentence fluency and diversity. Our code and pre-trained models are available at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2109.05797

PDF

https://arxiv.org/pdf/2109.05797.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot