Paper Reading AI Learner

Analysing Mixed Initiatives and Search Strategies during Conversational Search

2021-09-13 13:30:10
Mohammad Aliannejadi, Leif Azzopardi, Hamed Zamani, Evangelos Kanoulas, Paul Thomas, Nick Craswel

Abstract

Information seeking conversations between users and Conversational Search Agents (CSAs) consist of multiple turns of interaction. While users initiate a search session, ideally a CSA should sometimes take the lead in the conversation by obtaining feedback from the user by offering query suggestions or asking for query clarifications i.e. mixed initiative. This creates the potential for more engaging conversational searches, but substantially increases the complexity of modelling and evaluating such scenarios due to the large interaction space coupled with the trade-offs between the costs and benefits of the different interactions. In this paper, we present a model for conversational search -- from which we instantiate different observed conversational search strategies, where the agent elicits: (i) Feedback-First, or (ii) Feedback-After. Using 49 TREC WebTrack Topics, we performed an analysis comparing how well these different strategies combine with different mixed initiative approaches: (i) Query Suggestions vs. (ii) Query Clarifications. Our analysis reveals that there is no superior or dominant combination, instead it shows that query clarifications are better when asked first, while query suggestions are better when asked after presenting results. We also show that the best strategy and approach depends on the trade-offs between the relative costs between querying and giving feedback, the performance of the initial query, the number of assessments per query, and the total amount of gain required. While this work highlights the complexities and challenges involved in analyzing CSAs, it provides the foundations for evaluating conversational strategies and conversational search agents in batch/offline settings.

Abstract (translated)

URL

https://arxiv.org/abs/2109.05955

PDF

https://arxiv.org/pdf/2109.05955.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot