Paper Reading AI Learner

Building Accurate Simple Models with Multihop

2021-09-14 20:39:11
Amit Dhurandhar, Tejaswini Pedapati

Abstract

Knowledge transfer from a complex high performing model to a simpler and potentially low performing one in order to enhance its performance has been of great interest over the last few years as it finds applications in important problems such as explainable artificial intelligence, model compression, robust model building and learning from small data. Known approaches to this problem (viz. Knowledge Distillation, Model compression, ProfWeight, etc.) typically transfer information directly (i.e. in a single/one hop) from the complex model to the chosen simple model through schemes that modify the target or reweight training examples on which the simple model is trained. In this paper, we propose a meta-approach where we transfer information from the complex model to the simple model by dynamically selecting and/or constructing a sequence of intermediate models of decreasing complexity that are less intricate than the original complex model. Our approach can transfer information between consecutive models in the sequence using any of the previously mentioned approaches as well as work in 1-hop fashion, thus generalizing these approaches. In the experiments on real data, we observe that we get consistent gains for different choices of models over 1-hop, which on average is more than 2\% and reaches up to 8\% in a particular case. We also empirically analyze conditions under which the multi-hop approach is likely to be beneficial over the traditional 1-hop approach, and report other interesting insights. To the best of our knowledge, this is the first work that proposes such a multi-hop approach to perform knowledge transfer given a single high performing complex model, making it in our opinion, an important methodological contribution.

Abstract (translated)

URL

https://arxiv.org/abs/2109.06961

PDF

https://arxiv.org/pdf/2109.06961.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot