Paper Reading AI Learner

Universal Adversarial Attack on Deep Learning Based Prognostics

2021-09-15 08:05:16
Arghya Basak, Pradeep Rathore, Sri Harsha Nistala, Sagar Srinivas, Venkataramana Runkana

Abstract

Deep learning-based time series models are being extensively utilized in engineering and manufacturing industries for process control and optimization, asset monitoring, diagnostic and predictive maintenance. These models have shown great improvement in the prediction of the remaining useful life (RUL) of industrial equipment but suffer from inherent vulnerability to adversarial attacks. These attacks can be easily exploited and can lead to catastrophic failure of critical industrial equipment. In general, different adversarial perturbations are computed for each instance of the input data. This is, however, difficult for the attacker to achieve in real time due to higher computational requirement and lack of uninterrupted access to the input data. Hence, we present the concept of universal adversarial perturbation, a special imperceptible noise to fool regression based RUL prediction models. Attackers can easily utilize universal adversarial perturbations for real-time attack since continuous access to input data and repetitive computation of adversarial perturbations are not a prerequisite for the same. We evaluate the effect of universal adversarial attacks using NASA turbofan engine dataset. We show that addition of universal adversarial perturbation to any instance of the input data increases error in the output predicted by the model. To the best of our knowledge, we are the first to study the effect of the universal adversarial perturbation on time series regression models. We further demonstrate the effect of varying the strength of perturbations on RUL prediction models and found that model accuracy decreases with the increase in perturbation strength of the universal adversarial attack. We also showcase that universal adversarial perturbation can be transferred across different models.

Abstract (translated)

URL

https://arxiv.org/abs/2109.07142

PDF

https://arxiv.org/pdf/2109.07142.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot