Paper Reading AI Learner

Humanly Certifying Superhuman Classifiers

2021-09-16 11:00:05
Qiongkai Xu, Christian Walder, Chenchen Xu

Abstract

Estimating the performance of a machine learning system is a longstanding challenge in artificial intelligence research. Today, this challenge is especially relevant given the emergence of systems which appear to increasingly outperform human beings. In some cases, this "superhuman" performance is readily demonstrated; for example by defeating legendary human players in traditional two player games. On the other hand, it can be challenging to evaluate classification models that potentially surpass human performance. Indeed, human annotations are often treated as a ground truth, which implicitly assumes the superiority of the human over any models trained on human annotations. In reality, human annotators can make mistakes and be subjective. Evaluating the performance with respect to a genuine oracle may be more objective and reliable, even when querying the oracle is expensive or impossible. In this paper, we first raise the challenge of evaluating the performance of both humans and models with respect to an oracle which is unobserved. We develop a theory for estimating the accuracy compared to the oracle, using only imperfect human annotations for reference. Our analysis provides a simple recipe for detecting and certifying superhuman performance in this setting, which we believe will assist in understanding the stage of current research on classification. We validate the convergence of the bounds and the assumptions of our theory on carefully designed toy experiments with known oracles. Moreover, we demonstrate the utility of our theory by meta-analyzing large-scale natural language processing tasks, for which an oracle does not exist, and show that under our assumptions a number of models from recent years are with high probability superhuman.

Abstract (translated)

URL

https://arxiv.org/abs/2109.07867

PDF

https://arxiv.org/pdf/2109.07867.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot