Paper Reading AI Learner

R3LIVE: A Robust, Real-time, RGB-colored, LiDAR-Inertial-Visual tightly-coupled state Estimation and mapping package

2021-09-10 22:43:59
Jiarong Lin, Fu Zhang
         

Abstract

In this letter, we propose a novel LiDAR-Inertial-Visual sensor fusion framework termed R3LIVE, which takes advantage of measurement of LiDAR, inertial, and visual sensors to achieve robust and accurate state estimation. R3LIVE is contained of two subsystems, the LiDAR-inertial odometry (LIO) and visual-inertial odometry (VIO). The LIO subsystem (FAST-LIO) takes advantage of the measurement from LiDAR and inertial sensors and builds the geometry structure of (i.e. the position of 3D points) global maps. The VIO subsystem utilizes the data of visual-inertial sensors and renders the map's texture (i.e. the color of 3D points). More specifically, the VIO subsystem fuses the visual data directly and effectively by minimizing the frame-to-map photometric error. The developed system R3LIVE is developed based on our previous work R2LIVE, with careful architecture design and implementation. Experiment results show that the resultant system achieves more robustness and higher accuracy in state estimation than current counterparts (see our attached video). R3LIVE is a versatile and well-engineered system toward various possible applications, which can not only serve as a SLAM system for real-time robotic applications, but can also reconstruct the dense, precise, RGB-colored 3D maps for applications like surveying and mapping. Moreover, to make R3LIVE more extensible, we develop a series of offline utilities for reconstructing and texturing meshes, which further minimizes the gap between R3LIVE and various of 3D applications such as simulators, video games and etc (see our demos video). To share our findings and make contributions to the community, we open source R3LIVE on our Github, including all of our codes, software utilities, and the mechanical design of our device.

Abstract (translated)

URL

https://arxiv.org/abs/2109.07982

PDF

https://arxiv.org/pdf/2109.07982.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot