Paper Reading AI Learner

The Unreasonable Effectiveness of the Final Batch Normalization Layer

2021-09-18 21:19:31
Veysel Kocaman, Ofer M. Shir, Thomas Baeck

Abstract

Early-stage disease indications are rarely recorded in real-world domains, such as Agriculture and Healthcare, and yet, their accurate identification is critical in that point of time. In this type of highly imbalanced classification problems, which encompass complex features, deep learning (DL) is much needed because of its strong detection capabilities. At the same time, DL is observed in practice to favor majority over minority classes and consequently suffer from inaccurate detection of the targeted early-stage indications. In this work, we extend the study done by Kocaman et al., 2020, showing that the final BN layer, when placed before the softmax output layer, has a considerable impact in highly imbalanced image classification problems as well as undermines the role of the softmax outputs as an uncertainty measure. This current study addresses additional hypotheses and reports on the following findings: (i) the performance gain after adding the final BN layer in highly imbalanced settings could still be achieved after removing this additional BN layer in inference; (ii) there is a certain threshold for the imbalance ratio upon which the progress gained by the final BN layer reaches its peak; (iii) the batch size also plays a role and affects the outcome of the final BN application; (iv) the impact of the BN application is also reproducible on other datasets and when utilizing much simpler neural architectures; (v) the reported BN effect occurs only per a single majority class and multiple minority classes i.e., no improvements are evident when there are two majority classes; and finally, (vi) utilizing this BN layer with sigmoid activation has almost no impact when dealing with a strongly imbalanced image classification tasks.

Abstract (translated)

URL

https://arxiv.org/abs/2109.09016

PDF

https://arxiv.org/pdf/2109.09016.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot