Paper Reading AI Learner

Capsule networks with non-iterative cluster routing

2021-09-19 20:14:22
Zhihao Zhao, Samuel Cheng

Abstract

Capsule networks use routing algorithms to flow information between consecutive layers. In the existing routing procedures, capsules produce predictions (termed votes) for capsules of the next layer. In a nutshell, the next-layer capsule's input is a weighted sum over all the votes it receives. In this paper, we propose non-iterative cluster routing for capsule networks. In the proposed cluster routing, capsules produce vote clusters instead of individual votes for next-layer capsules, and each vote cluster sends its centroid to a next-layer capsule. Generally speaking, the next-layer capsule's input is a weighted sum over the centroid of each vote cluster it receives. The centroid that comes from a cluster with a smaller variance is assigned a larger weight in the weighted sum process. Compared with the state-of-the-art capsule networks, the proposed capsule networks achieve the best accuracy on the Fashion-MNIST and SVHN datasets with fewer parameters, and achieve the best accuracy on the smallNORB and CIFAR-10 datasets with a moderate number of parameters. The proposed capsule networks also produce capsules with disentangled representation and generalize well to images captured at novel viewpoints. The proposed capsule networks also preserve 2D spatial information of an input image in the capsule channels: if the capsule channels are rotated, the object reconstructed from these channels will be rotated by the same transformation. Codes are available at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2109.09213

PDF

https://arxiv.org/pdf/2109.09213.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot