Paper Reading AI Learner

Towards High-Quality Temporal Action Detection with Sparse Proposals

2021-09-18 06:15:19
Jiannan Wu, Peize Sun, Shoufa Chen, Jiewen Yang, Zihao Qi, Lan Ma, Ping Luo

Abstract

Temporal Action Detection (TAD) is an essential and challenging topic in video understanding, aiming to localize the temporal segments containing human action instances and predict the action categories. The previous works greatly rely upon dense candidates either by designing varying anchors or enumerating all the combinations of boundaries on video sequences; therefore, they are related to complicated pipelines and sensitive hand-crafted designs. Recently, with the resurgence of Transformer, query-based methods have tended to become the rising solutions for their simplicity and flexibility. However, there still exists a performance gap between query-based methods and well-established methods. In this paper, we identify the main challenge lies in the large variants of action duration and the ambiguous boundaries for short action instances; nevertheless, quadratic-computational global attention prevents query-based methods to build multi-scale feature maps. Towards high-quality temporal action detection, we introduce Sparse Proposals to interact with the hierarchical features. In our method, named SP-TAD, each proposal attends to a local segment feature in the temporal feature pyramid. The local interaction enables utilization of high-resolution features to preserve action instances details. Extensive experiments demonstrate the effectiveness of our method, especially under high tIoU thresholds. E.g., we achieve the state-of-the-art performance on THUMOS14 (45.7% on mAP@0.6, 33.4% on mAP@0.7 and 53.5% on mAP@Avg) and competitive results on ActivityNet-1.3 (32.99% on mAP@Avg). Code will be made available at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2109.08847

PDF

https://arxiv.org/pdf/2109.08847.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot