Paper Reading AI Learner

Splitfed learning without client-side synchronization: Analyzing client-side split network portion size to overall performance

2021-09-19 22:57:23
Praveen Joshi, Chandra Thapa, Seyit Camtepe, Mohammed Hasanuzzamana, Ted Scully, Haithem Afli

Abstract

Federated Learning (FL), Split Learning (SL), and SplitFed Learning (SFL) are three recent developments in distributed machine learning that are gaining attention due to their ability to preserve the privacy of raw data. Thus, they are widely applicable in various domains where data is sensitive, such as large-scale medical image classification, internet-of-medical-things, and cross-organization phishing email detection. SFL is developed on the confluence point of FL and SL. It brings the best of FL and SL by providing parallel client-side machine learning model updates from the FL paradigm and a higher level of model privacy (while training) by splitting the model between the clients and server coming from SL. However, SFL has communication and computation overhead at the client-side due to the requirement of client-side model synchronization. For the resource-constrained client-side, removal of such requirements is required to gain efficiency in the learning. In this regard, this paper studies SFL without client-side model synchronization. The resulting architecture is known as Multi-head Split Learning. Our empirical studies considering the ResNet18 model on MNIST data under IID data distribution among distributed clients find that Multi-head Split Learning is feasible. Its performance is comparable to the SFL. Moreover, SFL provides only 1%-2% better accuracy than Multi-head Split Learning on the MNIST test set. To further strengthen our results, we study the Multi-head Split Learning with various client-side model portions and its impact on the overall performance. To this end, our results find a minimal impact on the overall performance of the model.

Abstract (translated)

URL

https://arxiv.org/abs/2109.09246

PDF

https://arxiv.org/pdf/2109.09246.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot