Paper Reading AI Learner

Learning Adaptive Control for SE Hamiltonian Dynamics

2021-09-21 05:54:28
Thai Duong, Nikolay Atanasov

Abstract

Fast adaptive control is a critical component for reliable robot autonomy in rapidly changing operational conditions. While a robot dynamics model may be obtained from first principles or learned from data, updating its parameters is often too slow for online adaptation to environment changes. This motivates the use of machine learning techniques to learn disturbance descriptors from trajectory data offline as well as the design of adaptive control to estimate and compensate the disturbances online. This paper develops adaptive geometric control for rigid-body systems, such as ground, aerial, and underwater vehicles, that satisfy Hamilton's equations of motion over the SE(3) manifold. Our design consists of an offline system identification stage, followed by an online adaptive control stage. In the first stage, we learn a Hamiltonian model of the system dynamics using a neural ordinary differential equation (ODE) network trained from state-control trajectory data with different disturbance realizations. The disturbances are modeled as a linear combination of nonlinear descriptors. In the second stage, we design a trajectory tracking controller with disturbance compensation from an energy-based perspective. An adaptive control law is employed to adjust the disturbance model online proportional to the geometric tracking errors on the SE(3) manifold. We verify our adaptive geometric controller for trajectory tracking on a fully-actuated pendulum and an under-actuated quadrotor.

Abstract (translated)

URL

https://arxiv.org/abs/2109.09974

PDF

https://arxiv.org/pdf/2109.09974.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot